HW V, Math 530, Fall 2014

Ayman Badawi

QUESTION 1. (i) Let (G, *) be a group.

- a. Let $a \in G$ and let $C(a) = \{b \in G | a * b = b * a\}$. Prove that C(a) is a subgroup of G.
- b. Let $C(G) = \{b \in G | a * b = b * a \text{ for every } a \in G\}$. Prove that C(G) is a normal subgroup of G. C(G) is called the center of G, i.e., C(G) is the set of all elements of G that commutate with every element in G.
- c. Define a relation on G such that for every $a, b \in G$, $a \sim b$ iff $a = c * b * c^{-1}$ for some $c \in G$. Prove that \sim is an equivalence relation on G.
- d. Let ~ be as above and let D be an equivalence class that contains an element $d \in G$. Prove that |D| = 1 if and only if $d \in C(G)$. Hence we can conclude that if $D_1, D_2, ..., D_n$ are all distinct equivalence classes such that $|D_i| = 1$ for every $1 \le i \le n$, then $D_1 \cup D_2 \cup \cdots \cup D_n = C(G)$. Thus, we conclude that if G is finite and $M_1, ..., M_k$ are all distinct equivalence classes where $|M_i| \ge 2$, then $|G| = |C(G)| + |M_1| + |M_2| + \cdots + |M_k|$.
- e. Assume G is finite, let ~ as above, and let M be an equivalence class such that $|M| \ge 2$. Suppose $b \in M$. Let F be the set of all distinct left cosets of C(b). Prove that |M| = |F|. (hint: Define $H : F \to M$ such that $H(v * C(b)) = v * bv^{-1}$. Show that H is well-defined and bijection). Since |F| = |G|/|C(b)|, we conclude that |M| is a factor of |G|.
- f. Assume $|G| = p^m$ for some positive integer $m \ge 1$ and some prime integer p. Prove that $|C(G)| \ge p$. [Hint: Use the conclusion in (d) and (e)]
- g. Assume G/C(G) is cyclic. Prove that G is abelian.
- h. Assume $|G| = p^2$ for some prime integer p. Prove that G is abelian.
- (ii) Let G be an abelian group of order pq for some distinct prime integers p, q. Suppose that G has a subgroup of order q, say H and a subgroup of order p, say K. Prove that G is cyclic.
- (iii) Let (G, *) be an abelian group of order pq for some distinct prime integers p, q. Suppose that G has a subgroup of order q. Prove that G is cyclic.
- (iv) Let x = (1, 2) and $y = (2, 3, 4) \in S_4$. Find xoy and yox. Find |xoy| and |yox|.
- (v) Prove that S_8 has subgroups of order 15, 12, and 10 but S_8 has no elements of order 9, 14.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

Name-