HW V , Math 530, Fall 2014

Ayman Badawi

QUESTION 1. (i) Let $(G, *)$ be a group.
a. Let $a \in G$ and let $C(a)=\{b \in G \mid a * b=b * a\}$. Prove that $C(a)$ is a subgroup of G.
b. Let $C(G)=\{b \in G \mid a * b=b * a$ for every $a \in G\}$. Prove that $C(G)$ is a normal subgroup of G. $C(G)$ is called the center of G, i.e., $C(G)$ is the set of all elements of G that commutate with every element in G.
c. Define a relation on G such that for every $a, b \in G, a \sim b$ iff $a=c * b * c^{-1}$ for some $c \in G$. Prove that \sim is an equivalence relation on G.
d. Let \sim be as above and let D be an equivalence class that contains an element $d \in G$. Prove that $|D|=1$ if and only if $d \in C(G)$. Hence we can conclude that if $D_{1}, D_{2}, \ldots, D_{n}$ are all distinct equivalence classes such that $\left|D_{i}\right|=1$ for every $1 \leq i \leq n$, then $D_{1} \cup D_{2} \cup \cdots \cup D_{n}=C(G)$. Thus, we conclude that if G is finite and M_{1}, \ldots, M_{k} are all distinct equivalence classes where $\left|M_{i}\right| \geq 2$, then $|G|=|C(G)|+\left|M_{1}\right|+\left|M_{2}\right|+\cdots+\left|M_{k}\right|$.
e. Assume G is finite, let \sim as above, and let M be an equivalence class such that $|M| \geq 2$. Suppose $b \in M$. Let F be the set of all distinct left cosets of $C(b)$. Prove that $|M|=|F|$. (hint: Define $H: F \rightarrow M$ such that $H(v * C(b))=v * b v^{-1}$. Show that H is well-defined and bijection). Since $|F|=|G| /|C(b)|$, we conclude that $|M|$ is a factor of $|G|$.
f. Assume $|G|=p^{m}$ for some positive integer $m \geq 1$ and some prime integer p. Prove that $|C(G)| \geq p$. [Hint: Use the conclusion in (d) and (e)]
g. Assume $G / C(G)$ is cyclic. Prove that G is abelian.
h. Assume $|G|=p^{2}$ for some prime integer p. Prove that G is abelian.
(ii) Let G be an abelian group of order $p q$ for some distinct prime integers p, q. Suppose that G has a subgroup of order q, say H and a subgroup of order p, say K. Prove that G is cyclic.
(iii) Let $(G, *)$ be an abelian group of order $p q$ for some distinct prime integers p, q. Suppose that G has a subgroup of order q. Prove that G is cyclic.
(iv) Let $x=(1,2)$ and $y=(2,3,4) \in S_{4}$. Find $x o y$ and $y o x$. Find $|x o y|$ and $|y o x|$.
(v) Prove that S_{8} has subgroups of order 15,12 , and 10 but S_{8} has no elements of order 9,14 .

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

